中国·37000Cm(威尼斯WnS认证)官网-Master Platform

横幅广告banner-高速先生手机版

浅谈RC电路

发布时间:2023-03-28 15:13

37000Cm威尼斯高速先生成员--孙宜文

本文示例的是较为常见的一阶RC积分电路,从时域角度来说,大家可能都听过RC时间常数,那么其充放电过程是怎样的?频域特性如何?有何规律,笔者借此篇文章和大家一起简单了解下,本文使用Sigrity Topology Explorer 17.4仿真软件。

先搭建一个简单的电路模型,观察时域波形,1V恒压源,路径上使用RC串联电路,R值为1Kohm,C值为1nf。探测电容端的充电电压及电流,仿真结果如下:

243-04.png

通过时域结果可以看到电容两端的电压和电流的变化,第二张图是标记了不同时间常数下的电容电压值。

电源V通过电阻给电容C充电,V0为电容上的初始电压,Vc为电容充满电后的电压,Vt为t时刻的电容电压,便可以得到以下计算公式:

Vt=V0+(Vc-V0)*[1-e^(-t/RC)],其中时间常数T=RC

在此链路中T=1*10^(-9) F * 1*10^3 ohm =1us,所以1T=1us。

每经过一个时间常数,电容两端的电压上升(1-1/e)大约是电源电压和电容两端电压之差的63.2%。从电路接通电源开始:

1us时,Vt=0+(1-0)*(1-1/e)≈0.632V,

2us时,Vt=0.632+(1-0.632)*(1-1/e)≈0.865V,

3us时,Vt=……

4us时,Vt=……

5us时,Vt=……

……

理论上5个时间常数后,电容基本上接近充满的状态了,不过是不可能完全充满的,因为公式里面的指数函数的值不可能会等于0,随着时间的无限延长,电容两端的电压也会无限趋近于1v,和前面仿真看到的时域响应的波形吻合。

了解时域的响应后接着看下频域响应,画出对应的电路图,

由频域模型图得知电阻的比值,即可计算出电路的网络函数表达式:H(ω)=Uout/Uin=1/(1+jωRC) 

幅频特性大致如下图:

 

可以看到,低频输出幅度大,高频输出幅度小。选择适当的截止频率可以让信号

的有效成分通过且使其夹带的毛刺得到合理抑制,这里的放大倍数0.707实际上也是我们常提到的增益为-3db的点,表示输出占输入幅度的1/√2,ωc=1/RC也作为截止频率衡量滤波性能的定性指标。由于具备这种频域特性,这种RC积分

电路常被用作于滤除高频的一些毛刺噪声。

好了,这期关于RC电路的分享就到这里,还有更多内容读者们敬请期待。